C++ Boost


Image View

Overview

An image view is a generalization of STL range concept to multiple dimensions. Similar to ranges (and iterators), image views are shallow, don’t own the underlying data and don’t propagate their constness over the data. For example, a constant image view cannot be resized, but may allow modifying the pixels. For pixel-immutable operations, use constant-value image view (also called non-mutable image view). Most general N-dimensional views satisfy the following concept:

concept RandomAccessNDImageViewConcept<Regular View>
{
  typename value_type;      // for pixel-based views, the pixel type
  typename reference;       // result of dereferencing
  typename difference_type; // result of operator-(iterator,iterator) (1-dimensional!)
  typename const_t;  where RandomAccessNDImageViewConcept<View>; // same as View, but over immutable values
  typename point_t;  where PointNDConcept<point_t>; // N-dimensional point
  typename locator;  where RandomAccessNDLocatorConcept<locator>; // N-dimensional locator.
  typename iterator; where RandomAccessTraversalConcept<iterator>; // 1-dimensional iterator over all values
  typename reverse_iterator; where RandomAccessTraversalConcept<reverse_iterator>;
  typename size_type;       // the return value of size()

  // Equivalent to RandomAccessNDLocatorConcept::axis
  template <size_t D> struct axis {
      typename coord_t = point_t::axis<D>::coord_t;
      typename iterator; where RandomAccessTraversalConcept<iterator>;   // iterator along D-th axis.
      where SameType<coord_t, iterator::difference_type>;
      where SameType<iterator::value_type,value_type>;
  };

  // Defines the type of a view similar to this type, except it invokes Deref upon dereferencing
  template <PixelDereferenceAdaptorConcept Deref> struct add_deref {
      typename type;        where RandomAccessNDImageViewConcept<type>;
      static type make(const View& v, const Deref& deref);
  };

  static const size_t num_dimensions = point_t::num_dimensions;

  // Create from a locator at the top-left corner and dimensions
  View::View(const locator&, const point_type&);

  size_type        View::size()       const; // total number of elements
  reference        operator[](View, const difference_type&) const; // 1-dimensional reference
  iterator         View::begin()      const;
  iterator         View::end()        const;
  reverse_iterator View::rbegin()     const;
  reverse_iterator View::rend()       const;
  iterator         View::at(const point_t&);
  point_t          View::dimensions() const; // number of elements along each dimension
  bool             View::is_1d_traversable() const;   // Does an iterator over the first dimension visit each value?

  // iterator along a given dimension starting at a given point
  template <size_t D> View::axis<D>::iterator View::axis_iterator(const point_t&) const;

  reference operator()(View,const point_t&) const;
};

concept MutableRandomAccessNDImageViewConcept<RandomAccessNDImageViewConcept View>
{
  where Mutable<reference>;
};

Two-dimensional image views have the following extra requirements:

concept RandomAccess2DImageViewConcept<RandomAccessNDImageViewConcept View>
{
  where num_dimensions==2;

  typename x_iterator = axis<0>::iterator;
  typename y_iterator = axis<1>::iterator;
  typename x_coord_t  = axis<0>::coord_t;
  typename y_coord_t  = axis<1>::coord_t;
  typename xy_locator = locator;

  x_coord_t View::width()  const;
  y_coord_t View::height() const;

  // X-navigation
  x_iterator View::x_at(const point_t&) const;
  x_iterator View::row_begin(y_coord_t) const;
  x_iterator View::row_end  (y_coord_t) const;

  // Y-navigation
  y_iterator View::y_at(const point_t&) const;
  y_iterator View::col_begin(x_coord_t) const;
  y_iterator View::col_end  (x_coord_t) const;

  // navigating in 2D
  xy_locator View::xy_at(const point_t&) const;

  // (x,y) versions of all methods taking point_t
  View::View(x_coord_t,y_coord_t,const locator&);
  iterator View::at(x_coord_t,y_coord_t) const;
  reference operator()(View,x_coord_t,y_coord_t) const;
  xy_locator View::xy_at(x_coord_t,y_coord_t) const;
  x_iterator View::x_at(x_coord_t,y_coord_t) const;
  y_iterator View::y_at(x_coord_t,y_coord_t) const;
};

concept MutableRandomAccess2DImageViewConcept<RandomAccess2DImageViewConcept View>
  : MutableRandomAccessNDImageViewConcept<View> {};

Image views that GIL typically uses operate on value types that model PixelValueConcept and have some additional requirements:

concept ImageViewConcept<RandomAccess2DImageViewConcept View>
{
  where PixelValueConcept<value_type>;
  where PixelIteratorConcept<x_iterator>;
  where PixelIteratorConcept<y_iterator>;
  where x_coord_t == y_coord_t;

  typename coord_t = x_coord_t;

  std::size_t View::num_channels() const;
};


concept MutableImageViewConcept<ImageViewConcept View>
  : MutableRandomAccess2DImageViewConcept<View>
{};

Two image views are compatible if they have compatible pixels and the same number of dimensions:

concept ViewsCompatibleConcept<ImageViewConcept V1, ImageViewConcept V2>
{
  where PixelsCompatibleConcept<V1::value_type, V2::value_type>;
  where V1::num_dimensions == V2::num_dimensions;
};

Compatible views must also have the same dimensions (i.e. the same width and height). Many algorithms taking multiple views require that they be pairwise compatible.

Models

GIL provides a model for ImageViewConcept called image_view. It is templated over a model of PixelLocatorConcept. (If instantiated with a model of MutablePixelLocatorConcept, it models MutableImageViewConcept). Synopsis:

// Locator models PixelLocatorConcept, could be MutablePixelLocatorConcept
template <typename Locator>
class image_view
{
public:
  typedef Locator xy_locator;
  typedef iterator_from_2d<Locator> iterator;
  ...
private:
  xy_locator _pixels;     // 2D pixel locator at the top left corner of the image view range
  point_t    _dimensions; // width and height
};

Image views are lightweight objects. A regular interleaved view is typically 16 bytes long - two integers for the width and height (inside dimensions) one for the number of bytes between adjacent rows (inside the locator) and one pointer to the beginning of the pixel block.

Algorithms

GIL provides algorithms constructing views from raw data or other views.

Creating Views from Raw Pixels

Standard image views can be constructed from raw data of any supported color space, bit depth, channel ordering or planar vs. interleaved structure. Interleaved views are constructed using interleaved_view, supplying the image dimensions, number of bytes per row, and a pointer to the first pixel:

// Iterator models pixel iterator (e.g. rgb8_ptr_t or rgb8c_ptr_t)
template <typename Iterator>
image_view<...> interleaved_view(ptrdiff_t width, ptrdiff_t height, Iterator pixels, ptrdiff_t rowsize)

Planar views are defined for every color space and take each plane separately. Here is the RGB one:

// Iterator models channel iterator (e.g. bits8* or bits8 const*)
template <typename Iterator>
image_view<...> planar_rgb_view(
    ptrdiff_t width, ptrdiff_t height,
    IC r, IC g, IC b, ptrdiff_t rowsize);

Note that the supplied pixel/channel iterators could be constant (read-only), in which case the returned view is a constant-value (immutable) view.

Creating Image Views from Other Image Views

It is possible to construct one image view from another by changing some policy of how image data is interpreted. The result could be a view whose type is derived from the type of the source. GIL uses the following metafunctions to get the derived types:

// Some result view types
template <typename View>
struct dynamic_xy_step_type : public dynamic_y_step_type<typename dynamic_x_step_type<View>::type> {};

template <typename View>
struct dynamic_xy_step_transposed_type : public dynamic_xy_step_type<typename transposed_type<View>::type> {};

// color and bit depth converted view to match pixel type P
template <typename SrcView, // Models ImageViewConcept
        typename DstP,    // Models PixelConcept
        typename ColorConverter=gil::default_color_converter>
struct color_converted_view_type
{
  typedef ... type;     // image view adaptor with value type DstP, over SrcView
};

// single-channel view of the N-th channel of a given view
template <typename SrcView>
struct nth_channel_view_type
{
  typedef ... type;
};

GIL Provides the following view transformations:

// flipped upside-down, left-to-right, transposed view
template <typename View> typename dynamic_y_step_type<View>::type             flipped_up_down_view(const View& src);
template <typename View> typename dynamic_x_step_type<View>::type             flipped_left_right_view(const View& src);
template <typename View> typename dynamic_xy_step_transposed_type<View>::type transposed_view(const View& src);

// rotations
template <typename View> typename dynamic_xy_step_type<View>::type            rotated180_view(const View& src);
template <typename View> typename dynamic_xy_step_transposed_type<View>::type rotated90cw_view(const View& src);
template <typename View> typename dynamic_xy_step_transposed_type<View>::type rotated90ccw_view(const View& src);

// view of an axis-aligned rectangular area within an image
template <typename View> View                                                 subimage_view(const View& src,
           const View::point_t& top_left, const View::point_t& dimensions);

// subsampled view (skipping pixels in X and Y)
template <typename View> typename dynamic_xy_step_type<View>::type            subsampled_view(const View& src,
           const View::point_t& step);

template <typename View, typename P>
color_converted_view_type<View,P>::type                                       color_converted_view(const View& src);
template <typename View, typename P, typename CCV> // with a custom color converter
color_converted_view_type<View,P,CCV>::type                                   color_converted_view(const View& src);

template <typename View>
nth_channel_view_type<View>::view_t                                           nth_channel_view(const View& view, int n);

The implementations of most of these view factory methods are straightforward. Here is, for example, how the flip views are implemented. The flip upside-down view creates a view whose first pixel is the bottom left pixel of the original view and whose y-step is the negated step of the source.

template <typename View>
typename dynamic_y_step_type<View>::type flipped_up_down_view(const View& src)
{
  gil_function_requires<ImageViewConcept<View> >();
  typedef typename dynamic_y_step_type<View>::type RView;
  return RView(src.dimensions(),typename RView::xy_locator(src.xy_at(0,src.height()-1),-1));
}

The call to gil_function_requires ensures (at compile time) that the template parameter is a valid model of ImageViewConcept. Using it generates easier to track compile errors, creates no extra code and has no run-time performance impact. We are using the boost::concept_check library, but wrapping it in gil_function_requires, which performs the check if the BOOST_GIL_USE_CONCEPT_CHECK is set. It is unset by default, because there is a significant increase in compile time when using concept checks. We will skip gil_function_requires in the code examples in this guide for the sake of succinctness.

Image views can be freely composed (see section Metafunctions for explanation of the typedefs rgb16_image_t and gray16_step_view_t):

rgb16_image_t img(100,100);    // an RGB interleaved image

// grayscale view over the green (index 1) channel of img
gray16_step_view_t green=nth_channel_view(view(img),1);

// 50x50 view of the green channel of img, upside down and taking every other pixel in X and in Y
gray16_step_view_t ud_fud=flipped_up_down_view(subsampled_view(green,2,2));

As previously stated, image views are fast, constant-time, shallow views over the pixel data. The above code does not copy any pixels; it operates on the pixel data allocated when img was created.

STL-Style Algorithms on Image Views

Image views provide 1D iteration of their pixels via begin() and end() methods, which makes it possible to use STL algorithms with them. However, using nested loops over X and Y is in many cases more efficient. The algorithms in this section resemble STL algorithms, but they abstract away the nested loops and take views (as opposed to ranges) as input.

// Equivalents of std::copy and std::uninitialized_copy
// where ImageViewConcept<V1>, MutableImageViewConcept<V2>, ViewsCompatibleConcept<V1,V2>
template <typename V1, typename V2>
void copy_pixels(const V1& src, const V2& dst);
template <typename V1, typename V2>
void uninitialized_copy_pixels(const V1& src, const V2& dst);

// Equivalents of std::fill and std::uninitialized_fill
// where MutableImageViewConcept<V>, PixelConcept<Value>, PixelsCompatibleConcept<Value,V::value_type>
template <typename V, typename Value>
void fill_pixels(const V& dst, const Value& val);
template <typename V, typename Value>
void uninitialized_fill_pixels(const V& dst, const Value& val);

// Equivalent of std::for_each
// where ImageViewConcept<V>, boost::UnaryFunctionConcept<F>
// where PixelsCompatibleConcept<V::reference, F::argument_type>
template <typename V, typename F>
F for_each_pixel(const V& view, F fun);
template <typename V, typename F>
F for_each_pixel_position(const V& view, F fun);

// Equivalent of std::generate
// where MutableImageViewConcept<V>, boost::UnaryFunctionConcept<F>
// where PixelsCompatibleConcept<V::reference, F::argument_type>
template <typename V, typename F>
void generate_pixels(const V& dst, F fun);

// Equivalent of std::transform with one source
// where ImageViewConcept<V1>, MutableImageViewConcept<V2>
// where boost::UnaryFunctionConcept<F>
// where PixelsCompatibleConcept<V1::const_reference, F::argument_type>
// where PixelsCompatibleConcept<F::result_type, V2::reference>
template <typename V1, typename V2, typename F>
F transform_pixels(const V1& src, const V2& dst, F fun);
template <typename V1, typename V2, typename F>
F transform_pixel_positions(const V1& src, const V2& dst, F fun);

// Equivalent of std::transform with two sources
// where ImageViewConcept<V1>, ImageViewConcept<V2>, MutableImageViewConcept<V3>
// where boost::BinaryFunctionConcept<F>
// where PixelsCompatibleConcept<V1::const_reference, F::first_argument_type>
// where PixelsCompatibleConcept<V2::const_reference, F::second_argument_type>
// where PixelsCompatibleConcept<F::result_type, V3::reference>
template <typename V1, typename V2, typename V3, typename F>
F transform_pixels(const V1& src1, const V2& src2, const V3& dst, F fun);
template <typename V1, typename V2, typename V3, typename F>
F transform_pixel_positions(const V1& src1, const V2& src2, const V3& dst, F fun);

// Copies a view into another, color converting the pixels if needed, with the default or user-defined color converter
// where ImageViewConcept<V1>, MutableImageViewConcept<V2>
// V1::value_type must be convertible to V2::value_type.
template <typename V1, typename V2>
void copy_and_convert_pixels(const V1& src, const V2& dst);
template <typename V1, typename V2, typename ColorConverter>
void copy_and_convert_pixels(const V1& src, const V2& dst, ColorConverter ccv);

// Equivalent of std::equal
// where ImageViewConcept<V1>, ImageViewConcept<V2>, ViewsCompatibleConcept<V1,V2>
template <typename V1, typename V2>
bool equal_pixels(const V1& view1, const V2& view2);

Algorithms that take multiple views require that they have the same dimensions. for_each_pixel_position and transform_pixel_positions pass pixel locators, as opposed to pixel references, to their function objects. This allows for writing algorithms that use pixel neighbours, as the tutorial demonstrates.

Most of these algorithms check whether the image views are 1D-traversable. A 1D-traversable image view has no gaps at the end of the rows. In other words, if an x_iterator of that view is advanced past the last pixel in a row it will move to the first pixel of the next row. When image views are 1D-traversable, the algorithms use a single loop and run more efficiently. If one or more of the input views are not 1D-traversable, the algorithms fall-back to an X-loop nested inside a Y-loop.

The algorithms typically delegate the work to their corresponding STL algorithms. For example, copy_pixels calls std::copy either for each row, or, when the images are 1D-traversable, once for all pixels.

In addition, overloads are sometimes provided for the STL algorithms. For example, std::copy for planar iterators is overloaded to perform std::copy for each of the planes. std::copy over bitwise-copyable pixels results in std::copy over unsigned char, which STL implements via memmove.

As a result copy_pixels may result in a single call to memmove for interleaved 1D-traversable views, or one per each plane of planar 1D-traversable views, or one per each row of interleaved non-1D-traversable images, etc.

GIL also provides some beta-versions of image processing algorithms, such as resampling and convolution in a numerics extension available on http://stlab.adobe.com/gil/download.html. This code is in early stage of development and is not optimized for speed