Boost GIL


numeric.hpp
1 //
2 // Copyright 2019 Olzhas Zhumabek <anonymous.from.applecity@gmail.com>
3 // Copyright 2021 Pranam Lashkari <plashkari628@gmail.com>
4 //
5 // Use, modification and distribution are subject to the Boost Software License,
6 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
7 // http://www.boost.org/LICENSE_1_0.txt)
8 //
9 #ifndef BOOST_GIL_IMAGE_PROCESSING_NUMERIC_HPP
10 #define BOOST_GIL_IMAGE_PROCESSING_NUMERIC_HPP
11 
12 #include <boost/gil/image_processing/kernel.hpp>
13 #include <boost/gil/image_processing/convolve.hpp>
14 #include <boost/gil/image_view.hpp>
15 #include <boost/gil/typedefs.hpp>
16 #include <boost/gil/detail/math.hpp>
17 // fixes ambiguous call to std::abs, https://stackoverflow.com/a/30084734/4593721
18 #include <cstdlib>
19 #include <cmath>
20 
21 namespace boost { namespace gil {
22 
34 inline double normalized_sinc(double x)
35 {
36  return std::sin(x * boost::gil::detail::pi) / (x * boost::gil::detail::pi);
37 }
38 
46 inline double lanczos(double x, std::ptrdiff_t a)
47 {
48  // means == but <= avoids compiler warning
49  if (0 <= x && x <= 0)
50  return 1;
51 
52  if (static_cast<double>(-a) < x && x < static_cast<double>(a))
53  return normalized_sinc(x) / normalized_sinc(x / static_cast<double>(a));
54 
55  return 0;
56 }
57 
58 #if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
59 #pragma warning(push)
60 #pragma warning(disable:4244) // 'argument': conversion from 'const Channel' to 'BaseChannelValue', possible loss of data
61 #endif
62 
63 inline void compute_tensor_entries(
64  boost::gil::gray16s_view_t dx,
65  boost::gil::gray16s_view_t dy,
66  boost::gil::gray32f_view_t m11,
67  boost::gil::gray32f_view_t m12_21,
68  boost::gil::gray32f_view_t m22)
69 {
70  for (std::ptrdiff_t y = 0; y < dx.height(); ++y) {
71  for (std::ptrdiff_t x = 0; x < dx.width(); ++x) {
72  auto dx_value = dx(x, y);
73  auto dy_value = dy(x, y);
74  m11(x, y) = dx_value * dx_value;
75  m12_21(x, y) = dx_value * dy_value;
76  m22(x, y) = dy_value * dy_value;
77  }
78  }
79 }
80 
81 #if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
82 #pragma warning(pop)
83 #endif
84 
91 template <typename T = float, typename Allocator = std::allocator<T>>
92 inline auto generate_normalized_mean(std::size_t side_length)
94 {
95  if (side_length % 2 != 1)
96  throw std::invalid_argument("kernel dimensions should be odd and equal");
97  const float entry = 1.0f / static_cast<float>(side_length * side_length);
98 
99  detail::kernel_2d<T, Allocator> result(side_length, side_length / 2, side_length / 2);
100  for (auto& cell: result) {
101  cell = entry;
102  }
103 
104  return result;
105 }
106 
111 template <typename T = float, typename Allocator = std::allocator<T>>
112 inline auto generate_unnormalized_mean(std::size_t side_length)
114 {
115  if (side_length % 2 != 1)
116  throw std::invalid_argument("kernel dimensions should be odd and equal");
117 
118  detail::kernel_2d<T, Allocator> result(side_length, side_length / 2, side_length / 2);
119  for (auto& cell: result) {
120  cell = 1.0f;
121  }
122 
123  return result;
124 }
125 
131 template <typename T = float, typename Allocator = std::allocator<T>>
132 inline auto generate_gaussian_kernel(std::size_t side_length, double sigma)
134 {
135  if (side_length % 2 != 1)
136  throw std::invalid_argument("kernel dimensions should be odd and equal");
137 
138  const double denominator = 2 * boost::gil::detail::pi * sigma * sigma;
139  auto const middle = side_length / 2;
140  std::vector<T, Allocator> values(side_length * side_length);
141  T sum{0};
142  for (std::size_t y = 0; y < side_length; ++y)
143  {
144  for (std::size_t x = 0; x < side_length; ++x)
145  {
146  const auto delta_x = x - middle;
147  const auto delta_y = y - middle;
148  const auto power = static_cast<double>(delta_x * delta_x + delta_y * delta_y) / (2 * sigma * sigma);
149  const double nominator = std::exp(-power);
150  const auto value = static_cast<T>(nominator / denominator);
151  values[y * side_length + x] = value;
152  sum += value;
153  }
154  }
155 
156  // normalize so that Gaussian kernel sums up to 1.
157  std::transform(values.begin(), values.end(), values.begin(), [&sum](const auto & v) { return v/sum; });
158 
159  return detail::kernel_2d<T, Allocator>(values.begin(), values.size(), middle, middle);
160 }
161 
169 template <typename T = float, typename Allocator = std::allocator<T>>
170 inline auto generate_dx_sobel(unsigned int degree = 1)
172 {
173  switch (degree)
174  {
175  case 0:
176  {
177  return detail::get_identity_kernel<T, Allocator>();
178  }
179  case 1:
180  {
181  detail::kernel_2d<T, Allocator> result(3, 1, 1);
182  std::copy(detail::dx_sobel.begin(), detail::dx_sobel.end(), result.begin());
183  return result;
184  }
185  default:
186  throw std::logic_error("not supported yet");
187  }
188 
189  //to not upset compiler
190  throw std::runtime_error("unreachable statement");
191 }
192 
200 template <typename T = float, typename Allocator = std::allocator<T>>
201 inline auto generate_dx_scharr(unsigned int degree = 1)
203 {
204  switch (degree)
205  {
206  case 0:
207  {
208  return detail::get_identity_kernel<T, Allocator>();
209  }
210  case 1:
211  {
212  detail::kernel_2d<T, Allocator> result(3, 1, 1);
213  std::copy(detail::dx_scharr.begin(), detail::dx_scharr.end(), result.begin());
214  return result;
215  }
216  default:
217  throw std::logic_error("not supported yet");
218  }
219 
220  //to not upset compiler
221  throw std::runtime_error("unreachable statement");
222 }
223 
231 template <typename T = float, typename Allocator = std::allocator<T>>
232 inline auto generate_dy_sobel(unsigned int degree = 1)
234 {
235  switch (degree)
236  {
237  case 0:
238  {
239  return detail::get_identity_kernel<T, Allocator>();
240  }
241  case 1:
242  {
243  detail::kernel_2d<T, Allocator> result(3, 1, 1);
244  std::copy(detail::dy_sobel.begin(), detail::dy_sobel.end(), result.begin());
245  return result;
246  }
247  default:
248  throw std::logic_error("not supported yet");
249  }
250 
251  //to not upset compiler
252  throw std::runtime_error("unreachable statement");
253 }
254 
262 template <typename T = float, typename Allocator = std::allocator<T>>
263 inline auto generate_dy_scharr(unsigned int degree = 1)
265 {
266  switch (degree)
267  {
268  case 0:
269  {
270  return detail::get_identity_kernel<T, Allocator>();
271  }
272  case 1:
273  {
274  detail::kernel_2d<T, Allocator> result(3, 1, 1);
275  std::copy(detail::dy_scharr.begin(), detail::dy_scharr.end(), result.begin());
276  return result;
277  }
278  default:
279  throw std::logic_error("not supported yet");
280  }
281 
282  //to not upset compiler
283  throw std::runtime_error("unreachable statement");
284 }
285 
295 template <typename GradientView, typename OutputView>
297  GradientView dx,
298  GradientView dy,
299  OutputView ddxx,
300  OutputView dxdy,
301  OutputView ddyy)
302 {
303  auto sobel_x = generate_dx_sobel();
304  auto sobel_y = generate_dy_sobel();
305  detail::convolve_2d(dx, sobel_x, ddxx);
306  detail::convolve_2d(dx, sobel_y, dxdy);
307  detail::convolve_2d(dy, sobel_y, ddyy);
308 }
309 
310 }} // namespace boost::gil
311 
312 #endif
variable-size kernel
Definition: kernel.hpp:273
auto generate_gaussian_kernel(std::size_t side_length, double sigma) -> detail::kernel_2d< T, Allocator >
Generate Gaussian kernel.
Definition: numeric.hpp:132
auto generate_unnormalized_mean(std::size_t side_length) -> detail::kernel_2d< T, Allocator >
Generate kernel with all 1s.
Definition: numeric.hpp:112
void compute_hessian_entries(GradientView dx, GradientView dy, OutputView ddxx, OutputView dxdy, OutputView ddyy)
Compute xy gradient, and second order x and y gradients.
Definition: numeric.hpp:296
auto generate_dy_scharr(unsigned int degree=1) -> detail::kernel_2d< T, Allocator >
Generate Scharr operator in vertical direction.
Definition: numeric.hpp:263
double lanczos(double x, std::ptrdiff_t a)
Lanczos response at point x.
Definition: numeric.hpp:46
auto generate_dx_sobel(unsigned int degree=1) -> detail::kernel_2d< T, Allocator >
Generates Sobel operator in horizontal direction.
Definition: numeric.hpp:170
auto generate_normalized_mean(std::size_t side_length) -> detail::kernel_2d< T, Allocator >
Generate mean kernel.
Definition: numeric.hpp:92
auto generate_dy_sobel(unsigned int degree=1) -> detail::kernel_2d< T, Allocator >
Generates Sobel operator in vertical direction.
Definition: numeric.hpp:232
auto generate_dx_scharr(unsigned int degree=1) -> detail::kernel_2d< T, Allocator >
Generate Scharr operator in horizontal direction.
Definition: numeric.hpp:201
BOOST_FORCEINLINE auto copy(boost::gil::pixel< T, CS > *first, boost::gil::pixel< T, CS > *last, boost::gil::pixel< T, CS > *dst) -> boost::gil::pixel< T, CS > *
Copy when both src and dst are interleaved and of the same type can be just memmove.
Definition: algorithm.hpp:145
defined(BOOST_NO_CXX17_HDR_MEMORY_RESOURCE)
Definition: algorithm.hpp:36