9 #ifndef BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP
10 #define BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP
14 #include <type_traits>
20 #include <boost/assert.hpp>
22 #include <boost/gil/image.hpp>
23 #include <boost/gil/image_processing/kernel.hpp>
24 #include <boost/gil/image_processing/convolve.hpp>
25 #include <boost/gil/image_processing/numeric.hpp>
27 namespace boost {
namespace gil {
33 typename SourceChannelT,
34 typename ResultChannelT,
39 void threshold_impl(SrcView
const& src_view, DstView
const& dst_view, Operator
const& threshold_op)
41 gil_function_requires<ImageViewConcept<SrcView>>();
42 gil_function_requires<MutableImageViewConcept<DstView>>();
43 static_assert(color_spaces_are_compatible
45 typename color_space_type<SrcView>::type,
46 typename color_space_type<DstView>::type
47 >::value,
"Source and destination views must have pixels with the same color space");
50 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
52 typename SrcView::x_iterator src_it = src_view.row_begin(y);
53 typename DstView::x_iterator dst_it = dst_view.row_begin(y);
55 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
57 static_transform(src_it[x], dst_it[x], threshold_op);
91 enum class threshold_adaptive_method
108 template <
typename SrcView,
typename DstView>
110 SrcView
const& src_view,
111 DstView
const& dst_view,
123 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
124 [threshold_value, max_value](source_channel_t px) -> result_channel_t {
125 return px > threshold_value ? max_value : 0;
130 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
131 [threshold_value, max_value](source_channel_t px) -> result_channel_t {
132 return px > threshold_value ? 0 : max_value;
147 template <
typename SrcView,
typename DstView>
149 SrcView
const& src_view,
150 DstView
const& dst_view,
158 result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
159 threshold_binary(src_view, dst_view, threshold_value, max_value, direction);
173 template <
typename SrcView,
typename DstView>
175 SrcView
const& src_view,
176 DstView
const& dst_view,
186 std::function<result_channel_t(source_channel_t)> threshold_logic;
192 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
193 [threshold_value](source_channel_t px) -> result_channel_t {
194 return px > threshold_value ? threshold_value : px;
199 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
200 [threshold_value](source_channel_t px) -> result_channel_t {
201 return px > threshold_value ? px : threshold_value;
209 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
210 [threshold_value](source_channel_t px) -> result_channel_t {
211 return px > threshold_value ? px : 0;
216 detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
217 [threshold_value](source_channel_t px) -> result_channel_t {
218 return px > threshold_value ? 0 : px;
226 template <
typename SrcView,
typename DstView>
227 void otsu_impl(SrcView
const& src_view, DstView
const& dst_view,
threshold_direction direction)
230 using source_channel_t =
typename channel_type<SrcView>::type;
232 std::array<std::size_t, 256> histogram{};
235 auto min = (std::numeric_limits<source_channel_t>::max)(),
236 max = (std::numeric_limits<source_channel_t>::min)();
238 if (
sizeof(source_channel_t) > 1 || std::is_signed<source_channel_t>::value)
241 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
243 typename SrcView::x_iterator src_it = src_view.row_begin(y);
244 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
246 if (src_it[x] < min) min = src_it[x];
247 if (src_it[x] > min) min = src_it[x];
252 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
254 typename SrcView::x_iterator src_it = src_view.row_begin(y);
256 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
258 histogram[((src_it[x] - min) * 255) / (max - min)]++;
265 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
267 typename SrcView::x_iterator src_it = src_view.row_begin(y);
269 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
271 histogram[src_it[x]]++;
287 std::ptrdiff_t total_pixel = src_view.height() * src_view.width();
288 std::ptrdiff_t sum_total = 0, sum_back = 0;
289 std::size_t weight_back = 0, weight_fore = 0,
threshold = 0;
290 double var_max = 0, mean_back, mean_fore, var_intra_class;
292 for (std::size_t t = 0; t < 256; t++)
294 sum_total += t * histogram[t];
297 for (
int t = 0; t < 256; t++)
299 weight_back += histogram[t];
300 if (weight_back == 0)
continue;
302 weight_fore = total_pixel - weight_back;
303 if (weight_fore == 0)
break;
305 sum_back += t * histogram[t];
307 mean_back = sum_back / weight_back;
308 mean_fore = (sum_total - sum_back) / weight_fore;
311 var_intra_class = weight_back * weight_fore * (mean_back - mean_fore) * (mean_back - mean_fore);
314 if (var_intra_class > var_max) {
315 var_max = var_intra_class;
319 if (
sizeof(source_channel_t) > 1 && std::is_unsigned<source_channel_t>::value)
321 threshold_binary(src_view, dst_view, (threshold * (max - min) / 255) + min, direction);
329 template <
typename SrcView,
typename DstView>
330 void threshold_optimal
332 SrcView
const& src_view,
333 DstView
const& dst_view,
340 for (std::size_t i = 0; i < src_view.num_channels(); i++)
343 (nth_channel_view(src_view, i), nth_channel_view(dst_view, i), direction);
352 typename SourceChannelT,
353 typename ResultChannelT,
360 SrcView
const& src_view,
361 SrcView
const& convolved_view,
362 DstView
const& dst_view,
363 Operator
const& threshold_op
367 gil_function_requires<ImageViewConcept<SrcView>>();
368 gil_function_requires<MutableImageViewConcept<DstView>>();
370 static_assert(color_spaces_are_compatible
372 typename color_space_type<SrcView>::type,
373 typename color_space_type<DstView>::type
374 >::value,
"Source and destination views must have pixels with the same color space");
377 for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
379 typename SrcView::x_iterator src_it = src_view.row_begin(y);
380 typename SrcView::x_iterator convolved_it = convolved_view.row_begin(y);
381 typename DstView::x_iterator dst_it = dst_view.row_begin(y);
383 for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
385 static_transform(src_it[x], convolved_it[x], dst_it[x], threshold_op);
391 template <
typename SrcView,
typename DstView>
392 void threshold_adaptive
394 SrcView
const& src_view,
395 DstView
const& dst_view,
396 typename channel_type<DstView>::type max_value,
397 std::size_t kernel_size,
398 threshold_adaptive_method method = threshold_adaptive_method::mean,
400 typename channel_type<DstView>::type constant = 0
403 BOOST_ASSERT_MSG((kernel_size % 2 != 0),
"Kernel size must be an odd number");
405 typedef typename channel_type<SrcView>::type source_channel_t;
406 typedef typename channel_type<DstView>::type result_channel_t;
408 image<typename SrcView::value_type> temp_img(src_view.width(), src_view.height());
409 typename image<typename SrcView::value_type>::view_t temp_view =
view(temp_img);
410 SrcView temp_conv(temp_view);
412 if (method == threshold_adaptive_method::mean)
414 std::vector<float> mean_kernel_values(kernel_size, 1.0f/kernel_size);
415 kernel_1d<float> kernel(mean_kernel_values.begin(), kernel_size, kernel_size/2);
419 pixel<float, typename SrcView::value_type::layout_t>
420 >(src_view, kernel, temp_view);
422 else if (method == threshold_adaptive_method::gaussian)
425 convolve_2d(src_view, kernel, temp_view);
430 detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
431 [max_value, constant](source_channel_t px, source_channel_t threshold) -> result_channel_t
432 {
return px > (
threshold - constant) ? max_value : 0; });
436 detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
437 [max_value, constant](source_channel_t px, source_channel_t threshold) -> result_channel_t
438 {
return px > (
threshold - constant) ? 0 : max_value; });
442 template <
typename SrcView,
typename DstView>
443 void threshold_adaptive
445 SrcView
const& src_view,
446 DstView
const& dst_view,
447 std::size_t kernel_size,
448 threshold_adaptive_method method = threshold_adaptive_method::mean,
454 typedef typename channel_type<DstView>::type result_channel_t;
456 result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
458 threshold_adaptive(src_view, dst_view, max_value, kernel_size, method, direction, constant);
auto view(image< Pixel, IsPlanar, Alloc > &img) -> typename image< Pixel, IsPlanar, Alloc >::view_t const &
Returns the non-constant-pixel view of an image.
Definition: image.hpp:565
threshold_optimal_value
Method of optimal threshold value calculation.
Definition: threshold.hpp:79
threshold_truncate_mode
TODO.
Definition: threshold.hpp:86
void threshold_truncate(SrcView const &src_view, DstView const &dst_view, typename channel_type< DstView >::type threshold_value, threshold_truncate_mode mode=threshold_truncate_mode::threshold, threshold_direction direction=threshold_direction::regular)
Applies truncating threshold to each pixel of image view. Takes an image view and performs truncating...
Definition: threshold.hpp:174
threshold_direction
Definition: threshold.hpp:71
void threshold_binary(SrcView const &src_view, DstView const &dst_view, typename channel_type< DstView >::type threshold_value, threshold_direction direction=threshold_direction::regular)
Applies fixed threshold to each pixel of image view. Performs image binarization by thresholding chan...
Definition: threshold.hpp:148
@ inverse
Consider values less than or equal to threshold value.
@ regular
Consider values greater than threshold value.
auto generate_gaussian_kernel(std::size_t side_length, double sigma) -> detail::kernel_2d< T, Allocator >
Generate Gaussian kernel.
Definition: numeric.hpp:132
defined(BOOST_NO_CXX17_HDR_MEMORY_RESOURCE)
Definition: algorithm.hpp:36
Definition: color_convert.hpp:31