Boost GIL


threshold.hpp
1 //
2 // Copyright 2019 Miral Shah <miralshah2211@gmail.com>
3 // Copyright 2021 Pranam Lashkari <plashkari628@gmail.com>
4 //
5 // Use, modification and distribution are subject to the Boost Software License,
6 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
7 // http://www.boost.org/LICENSE_1_0.txt)
8 //
9 #ifndef BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP
10 #define BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP
11 
12 #include <limits>
13 #include <array>
14 #include <type_traits>
15 #include <cstddef>
16 #include <algorithm>
17 #include <vector>
18 #include <cmath>
19 
20 #include <boost/assert.hpp>
21 
22 #include <boost/gil/image.hpp>
23 #include <boost/gil/image_processing/kernel.hpp>
24 #include <boost/gil/image_processing/convolve.hpp>
25 #include <boost/gil/image_processing/numeric.hpp>
26 
27 namespace boost { namespace gil {
28 
29 namespace detail {
30 
31 template
32 <
33  typename SourceChannelT,
34  typename ResultChannelT,
35  typename SrcView,
36  typename DstView,
37  typename Operator
38 >
39 void threshold_impl(SrcView const& src_view, DstView const& dst_view, Operator const& threshold_op)
40 {
41  gil_function_requires<ImageViewConcept<SrcView>>();
42  gil_function_requires<MutableImageViewConcept<DstView>>();
43  static_assert(color_spaces_are_compatible
44  <
45  typename color_space_type<SrcView>::type,
46  typename color_space_type<DstView>::type
47  >::value, "Source and destination views must have pixels with the same color space");
48 
49  //iterate over the image checking each pixel value for the threshold
50  for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
51  {
52  typename SrcView::x_iterator src_it = src_view.row_begin(y);
53  typename DstView::x_iterator dst_it = dst_view.row_begin(y);
54 
55  for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
56  {
57  static_transform(src_it[x], dst_it[x], threshold_op);
58  }
59  }
60 }
61 
62 } //namespace boost::gil::detail
63 
71 {
72  regular,
73  inverse
74 };
75 
79 {
80  otsu
81 };
82 
86 {
87  threshold,
88  zero
89 };
90 
91 enum class threshold_adaptive_method
92 {
93  mean,
94  gaussian
95 };
96 
108 template <typename SrcView, typename DstView>
110  SrcView const& src_view,
111  DstView const& dst_view,
112  typename channel_type<DstView>::type threshold_value,
113  typename channel_type<DstView>::type max_value,
115 )
116 {
117  //deciding output channel type and creating functor
118  using source_channel_t = typename channel_type<SrcView>::type;
119  using result_channel_t = typename channel_type<DstView>::type;
120 
121  if (direction == threshold_direction::regular)
122  {
123  detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
124  [threshold_value, max_value](source_channel_t px) -> result_channel_t {
125  return px > threshold_value ? max_value : 0;
126  });
127  }
128  else
129  {
130  detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
131  [threshold_value, max_value](source_channel_t px) -> result_channel_t {
132  return px > threshold_value ? 0 : max_value;
133  });
134  }
135 }
136 
147 template <typename SrcView, typename DstView>
149  SrcView const& src_view,
150  DstView const& dst_view,
151  typename channel_type<DstView>::type threshold_value,
153 )
154 {
155  //deciding output channel type and creating functor
156  using result_channel_t = typename channel_type<DstView>::type;
157 
158  result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
159  threshold_binary(src_view, dst_view, threshold_value, max_value, direction);
160 }
161 
173 template <typename SrcView, typename DstView>
175  SrcView const& src_view,
176  DstView const& dst_view,
177  typename channel_type<DstView>::type threshold_value,
180 )
181 {
182  //deciding output channel type and creating functor
183  using source_channel_t = typename channel_type<SrcView>::type;
184  using result_channel_t = typename channel_type<DstView>::type;
185 
186  std::function<result_channel_t(source_channel_t)> threshold_logic;
187 
189  {
190  if (direction == threshold_direction::regular)
191  {
192  detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
193  [threshold_value](source_channel_t px) -> result_channel_t {
194  return px > threshold_value ? threshold_value : px;
195  });
196  }
197  else
198  {
199  detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
200  [threshold_value](source_channel_t px) -> result_channel_t {
201  return px > threshold_value ? px : threshold_value;
202  });
203  }
204  }
205  else
206  {
207  if (direction == threshold_direction::regular)
208  {
209  detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
210  [threshold_value](source_channel_t px) -> result_channel_t {
211  return px > threshold_value ? px : 0;
212  });
213  }
214  else
215  {
216  detail::threshold_impl<source_channel_t, result_channel_t>(src_view, dst_view,
217  [threshold_value](source_channel_t px) -> result_channel_t {
218  return px > threshold_value ? 0 : px;
219  });
220  }
221  }
222 }
223 
224 namespace detail{
225 
226 template <typename SrcView, typename DstView>
227 void otsu_impl(SrcView const& src_view, DstView const& dst_view, threshold_direction direction)
228 {
229  //deciding output channel type and creating functor
230  using source_channel_t = typename channel_type<SrcView>::type;
231 
232  std::array<std::size_t, 256> histogram{};
233  //initial value of min is set to maximum possible value to compare histogram data
234  //initial value of max is set to minimum possible value to compare histogram data
235  auto min = (std::numeric_limits<source_channel_t>::max)(),
236  max = (std::numeric_limits<source_channel_t>::min)();
237 
238  if (sizeof(source_channel_t) > 1 || std::is_signed<source_channel_t>::value)
239  {
240  //iterate over the image to find the min and max pixel values
241  for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
242  {
243  typename SrcView::x_iterator src_it = src_view.row_begin(y);
244  for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
245  {
246  if (src_it[x] < min) min = src_it[x];
247  if (src_it[x] > min) min = src_it[x];
248  }
249  }
250 
251  //making histogram
252  for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
253  {
254  typename SrcView::x_iterator src_it = src_view.row_begin(y);
255 
256  for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
257  {
258  histogram[((src_it[x] - min) * 255) / (max - min)]++;
259  }
260  }
261  }
262  else
263  {
264  //making histogram
265  for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
266  {
267  typename SrcView::x_iterator src_it = src_view.row_begin(y);
268 
269  for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
270  {
271  histogram[src_it[x]]++;
272  }
273  }
274  }
275 
276  //histData = histogram data
277  //sum = total (background + foreground)
278  //sumB = sum background
279  //wB = weight background
280  //wf = weight foreground
281  //varMax = tracking the maximum known value of between class variance
282  //mB = mu background
283  //mF = mu foreground
284  //varBeetween = between class variance
285  //http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html
286  //https://www.ipol.im/pub/art/2016/158/
287  std::ptrdiff_t total_pixel = src_view.height() * src_view.width();
288  std::ptrdiff_t sum_total = 0, sum_back = 0;
289  std::size_t weight_back = 0, weight_fore = 0, threshold = 0;
290  double var_max = 0, mean_back, mean_fore, var_intra_class;
291 
292  for (std::size_t t = 0; t < 256; t++)
293  {
294  sum_total += t * histogram[t];
295  }
296 
297  for (int t = 0; t < 256; t++)
298  {
299  weight_back += histogram[t]; // Weight Background
300  if (weight_back == 0) continue;
301 
302  weight_fore = total_pixel - weight_back; // Weight Foreground
303  if (weight_fore == 0) break;
304 
305  sum_back += t * histogram[t];
306 
307  mean_back = sum_back / weight_back; // Mean Background
308  mean_fore = (sum_total - sum_back) / weight_fore; // Mean Foreground
309 
310  // Calculate Between Class Variance
311  var_intra_class = weight_back * weight_fore * (mean_back - mean_fore) * (mean_back - mean_fore);
312 
313  // Check if new maximum found
314  if (var_intra_class > var_max) {
315  var_max = var_intra_class;
316  threshold = t;
317  }
318  }
319  if (sizeof(source_channel_t) > 1 && std::is_unsigned<source_channel_t>::value)
320  {
321  threshold_binary(src_view, dst_view, (threshold * (max - min) / 255) + min, direction);
322  }
323  else {
324  threshold_binary(src_view, dst_view, threshold, direction);
325  }
326 }
327 } //namespace detail
328 
329 template <typename SrcView, typename DstView>
330 void threshold_optimal
331 (
332  SrcView const& src_view,
333  DstView const& dst_view,
336 )
337 {
338  if (mode == threshold_optimal_value::otsu)
339  {
340  for (std::size_t i = 0; i < src_view.num_channels(); i++)
341  {
342  detail::otsu_impl
343  (nth_channel_view(src_view, i), nth_channel_view(dst_view, i), direction);
344  }
345  }
346 }
347 
348 namespace detail {
349 
350 template
351 <
352  typename SourceChannelT,
353  typename ResultChannelT,
354  typename SrcView,
355  typename DstView,
356  typename Operator
357 >
358 void adaptive_impl
359 (
360  SrcView const& src_view,
361  SrcView const& convolved_view,
362  DstView const& dst_view,
363  Operator const& threshold_op
364 )
365 {
366  //template argument validation
367  gil_function_requires<ImageViewConcept<SrcView>>();
368  gil_function_requires<MutableImageViewConcept<DstView>>();
369 
370  static_assert(color_spaces_are_compatible
371  <
372  typename color_space_type<SrcView>::type,
373  typename color_space_type<DstView>::type
374  >::value, "Source and destination views must have pixels with the same color space");
375 
376  //iterate over the image checking each pixel value for the threshold
377  for (std::ptrdiff_t y = 0; y < src_view.height(); y++)
378  {
379  typename SrcView::x_iterator src_it = src_view.row_begin(y);
380  typename SrcView::x_iterator convolved_it = convolved_view.row_begin(y);
381  typename DstView::x_iterator dst_it = dst_view.row_begin(y);
382 
383  for (std::ptrdiff_t x = 0; x < src_view.width(); x++)
384  {
385  static_transform(src_it[x], convolved_it[x], dst_it[x], threshold_op);
386  }
387  }
388 }
389 } //namespace boost::gil::detail
390 
391 template <typename SrcView, typename DstView>
392 void threshold_adaptive
393 (
394  SrcView const& src_view,
395  DstView const& dst_view,
396  typename channel_type<DstView>::type max_value,
397  std::size_t kernel_size,
398  threshold_adaptive_method method = threshold_adaptive_method::mean,
400  typename channel_type<DstView>::type constant = 0
401 )
402 {
403  BOOST_ASSERT_MSG((kernel_size % 2 != 0), "Kernel size must be an odd number");
404 
405  typedef typename channel_type<SrcView>::type source_channel_t;
406  typedef typename channel_type<DstView>::type result_channel_t;
407 
408  image<typename SrcView::value_type> temp_img(src_view.width(), src_view.height());
409  typename image<typename SrcView::value_type>::view_t temp_view = view(temp_img);
410  SrcView temp_conv(temp_view);
411 
412  if (method == threshold_adaptive_method::mean)
413  {
414  std::vector<float> mean_kernel_values(kernel_size, 1.0f/kernel_size);
415  kernel_1d<float> kernel(mean_kernel_values.begin(), kernel_size, kernel_size/2);
416 
417  detail::convolve_1d
418  <
419  pixel<float, typename SrcView::value_type::layout_t>
420  >(src_view, kernel, temp_view);
421  }
422  else if (method == threshold_adaptive_method::gaussian)
423  {
424  detail::kernel_2d<float> kernel = generate_gaussian_kernel(kernel_size, 1.0);
425  convolve_2d(src_view, kernel, temp_view);
426  }
427 
428  if (direction == threshold_direction::regular)
429  {
430  detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
431  [max_value, constant](source_channel_t px, source_channel_t threshold) -> result_channel_t
432  { return px > (threshold - constant) ? max_value : 0; });
433  }
434  else
435  {
436  detail::adaptive_impl<source_channel_t, result_channel_t>(src_view, temp_conv, dst_view,
437  [max_value, constant](source_channel_t px, source_channel_t threshold) -> result_channel_t
438  { return px > (threshold - constant) ? 0 : max_value; });
439  }
440 }
441 
442 template <typename SrcView, typename DstView>
443 void threshold_adaptive
444 (
445  SrcView const& src_view,
446  DstView const& dst_view,
447  std::size_t kernel_size,
448  threshold_adaptive_method method = threshold_adaptive_method::mean,
450  int constant = 0
451 )
452 {
453  //deciding output channel type and creating functor
454  typedef typename channel_type<DstView>::type result_channel_t;
455 
456  result_channel_t max_value = (std::numeric_limits<result_channel_t>::max)();
457 
458  threshold_adaptive(src_view, dst_view, max_value, kernel_size, method, direction, constant);
459 }
460 
462 
463 }} //namespace boost::gil
464 
465 #endif //BOOST_GIL_IMAGE_PROCESSING_THRESHOLD_HPP
auto view(image< Pixel, IsPlanar, Alloc > &img) -> typename image< Pixel, IsPlanar, Alloc >::view_t const &
Returns the non-constant-pixel view of an image.
Definition: image.hpp:565
threshold_optimal_value
Method of optimal threshold value calculation.
Definition: threshold.hpp:79
threshold_truncate_mode
TODO.
Definition: threshold.hpp:86
void threshold_truncate(SrcView const &src_view, DstView const &dst_view, typename channel_type< DstView >::type threshold_value, threshold_truncate_mode mode=threshold_truncate_mode::threshold, threshold_direction direction=threshold_direction::regular)
Applies truncating threshold to each pixel of image view. Takes an image view and performs truncating...
Definition: threshold.hpp:174
threshold_direction
Definition: threshold.hpp:71
void threshold_binary(SrcView const &src_view, DstView const &dst_view, typename channel_type< DstView >::type threshold_value, threshold_direction direction=threshold_direction::regular)
Applies fixed threshold to each pixel of image view. Performs image binarization by thresholding chan...
Definition: threshold.hpp:148
@ inverse
Consider values less than or equal to threshold value.
@ regular
Consider values greater than threshold value.
auto generate_gaussian_kernel(std::size_t side_length, double sigma) -> detail::kernel_2d< T, Allocator >
Generate Gaussian kernel.
Definition: numeric.hpp:132
defined(BOOST_NO_CXX17_HDR_MEMORY_RESOURCE)
Definition: algorithm.hpp:36
Definition: color_convert.hpp:31