<boost/python/operators.hpp> provides types and functions for automatically generating Python special methods from the corresponding C++ constructs. Most of these constructs are operator expressions, hence the name. To use the facility, substitute the self object for an object of the class type being wrapped in the expression to be exposed, and pass the result to class_<>::def(). Much of what is exposed in this header should be considered part of the implementation, so is not documented in detail here.
self_ns::self_t
is the actual type of the self
object. The library isolates self_t
in its own namespace, self_ns
,
in order to prevent the generalized operator templates which operate on
it from being found by argument-dependent lookup in other contexts. This
should be considered an implementation detail, since users should never
have to mention self_t
directly.
namespace boost { namespace python { namespace self_ns { { unspecified-type-declaration self_t; // inplace operators template <class T> operator_<unspecified> operator+=(self_t, T); template <class T> operator_<unspecified> operator-=(self_t, T); template <class T> operator_<unspecified> operator*=(self_t, T); template <class T> operator_<unspecified> operator/=(self_t, T); template <class T> operator_<unspecified> operator%=(self_t, T); template <class T> operator_<unspecified> operator>>=(self_t, T); template <class T> operator_<unspecified> operator<<=(self_t, T); template <class T> operator_<unspecified> operator&=(self_t, T); template <class T> operator_<unspecified> operator^=(self_t, T); template <class T> operator_<unspecified> operator|=(self_t, T); // comparisons template <class L, class R> operator_<unspecified> operator==(L const&, R const&); template <class L, class R> operator_<unspecified> operator!=(L const&, R const&); template <class L, class R> operator_<unspecified> operator<(L const&, R const&); template <class L, class R> operator_<unspecified> operator>(L const&, R const&); template <class L, class R> operator_<unspecified> operator<=(L const&, R const&); template <class L, class R> operator_<unspecified> operator>=(L const&, R const&); // non-member operations template <class L, class R> operator_<unspecified> operator+(L const&, R const&); template <class L, class R> operator_<unspecified> operator-(L const&, R const&); template <class L, class R> operator_<unspecified> operator*(L const&, R const&); template <class L, class R> operator_<unspecified> operator/(L const&, R const&); template <class L, class R> operator_<unspecified> operator%(L const&, R const&); template <class L, class R> operator_<unspecified> operator>>(L const&, R const&); template <class L, class R> operator_<unspecified> operator<<(L const&, R const&); template <class L, class R> operator_<unspecified> operator&(L const&, R const&); template <class L, class R> operator_<unspecified> operator^(L const&, R const&); template <class L, class R> operator_<unspecified> operator|(L const&, R const&); template <class L, class R> operator_<unspecified> pow(L const&, R const&); // unary operations operator_<unspecified> operator-(self_t); operator_<unspecified> operator+(self_t); operator_<unspecified> operator~(self_t); operator_<unspecified> operator!(self_t); // value operations operator_<unspecified> int_(self_t); operator_<unspecified> long_(self_t); operator_<unspecified> float_(self_t); operator_<unspecified> complex_(self_t); operator_<unspecified> str(self_t); operator_<unspecified> repr(self_t); }}};
The tables below describe the methods generated when the results of the
expressions described are passed as arguments to class_<>::def().
x
is an object of the class
type being wrapped.
In the table below, If r
is an object of type other<T>,
y
is an object of type
T
; otherwise, y
is an object of the same type as
r
.
C++ Expression |
Python Method Name |
C++ Implementation |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
In the tables below, if r
is of type self_t,
y
is an object of the
same type as x
; if l
or r
is an object of type other<T>,
y
is an object of type
T
; otherwise, y
is an object of the same type as
l
or r
.
l
is never of type self_t.
The column of Python Expressions illustrates the expressions that will be supported in Python for objects convertible to the types of x and y. The secondary operation arises due to Python's reflection rules for rich comparison operators, and are only used when the corresponding operation is not defined as a method of the y object.
C++ Expression |
Python Method Name |
C++ Implementation |
Python Expression (primary, secondary) |
---|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The operations whose names begin with "__r" below will only be called if the left-hand operand does not already support the given operation, as described here.
C++ Expression |
Python Method Name |
C++ Implementation |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C++ Expression |
Python Method Name |
C++ Implementation |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
C++ Expression |
Python Method Name |
C++ Implementation |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Instances of other<T>
can be used in operator expressions with self;
the result is equivalent to the same expression with a T
object in place of other<T>
. Use other<T>
to prevent construction of a T
object in case it is heavyweight, when
no constructor is available, or simply for clarity.
namespace boost { namespace python { template <class T> struct other { }; }}
Instantiations of detail::operator_<>
are used as the return type of
operator expressions involving self.
This should be considered an implementation detail and is only documented
here as a way of showing how the result of self-expressions match calls
to class_<>::def()
.
namespace boost { namespace python { namespace detail { template <unspecified> struct operator_ { }; }}}
namespace boost { namespace python { using self_ns::self; }}
#include <boost/python/module.hpp> #include <boost/python/class.hpp> #include <boost/python/operators.hpp> #include <boost/operators.hpp> struct number : boost::integer_arithmetic<number> { explicit number(long x_) : x(x_) {} operator long() const { return x; } template <class T> number& operator+=(T const& rhs) { x += rhs; return *this; } template <class T> number& operator-=(T const& rhs) { x -= rhs; return *this; } template <class T> number& operator*=(T const& rhs) { x *= rhs; return *this; } template <class T> number& operator/=(T const& rhs) { x /= rhs; return *this; } template <class T> number& operator%=(T const& rhs) { x %= rhs; return *this; } long x; }; using namespace boost::python; BOOST_PYTHON_MODULE(demo) { class_<number>("number", init<long>()) // interoperate with self .def(self += self) .def(self + self) .def(self -= self) .def(self - self) .def(self *= self) .def(self * self) .def(self /= self) .def(self / self) .def(self %= self) .def(self % self) // Convert to Python int .def(int_(self)) // interoperate with long .def(self += long()) .def(self + long()) .def(long() + self) .def(self -= long()) .def(self - long()) .def(long() - self) .def(self *= long()) .def(self * long()) .def(long() * self) .def(self /= long()) .def(self / long()) .def(long() / self) .def(self %= long()) .def(self % long()) .def(long() % self) ; }